

Small Signal Equivalent Circuits of Diodes, BJTs, MOSFETs and Analog CMOS. Simple Diode Circuits, Clipping, Clamping, Rectifier. BIASING and Bias Stability of Transistor and FET Amplifiers. Amplifiers, Single-and Multi-Stage, Differential and Operational, Feedback, and Power. Frequency Response of Amplifiers. Simple Op-Amp Circuits. Filters. Sinusoidal Oscillators, Criterion for Oscillation, Single-Transistor and Op-Amp Configurations. Function Generators and Wave-Shaping Circuits, 555 Timers. Power Supplies.

Previous Year GATE Papers and Analysis

GATE Papers with answer key

thegateacademy.com/gate-papers

Subject wise Weightage Analysis

thegateacademy.com/gate-syllabus

Contents

	Chapters	Page No.
#1.	Diode Circuits-Anaylsis & Application	1 – 20
	Wave Shaping Circuit	1
	Linear Wave Shaping Circuits	1 – 9
	Non Linear Wave Shaping Circuits	9 – 13
	Rectifiers and Power Supplies	14 – 17
	Zener Voltage Regulator	18
	Solved Examples	18 – 20
#2.	AC & DC Biasing-BJTs & FET	21 - 44
	Introduction	21 – 22
	Operating Point	22 – 27
	BIAS Stabilization	27 – 35
	Compensation Techniques	35 - 44
#3.	Small Signal Modeling Of BJT & FET	45 – 69
	Introduction	45
	BJT Transistor Modeling	45 - 51
	The Hybrid Equivalent Model	51 - 55
	Characteristics of Amplifiers	55 - 61
	FET Small Signal Model	61 - 63
	Solved Examples	63 - 69
#4.	BJT & JFET Frequency Response	70 – 86
	Introduction	70 – 72
	Low Frequency Response –BJT Amplifier	72 – 75
	Low frequency Response –FET Amplifier	76 - 80
	High Frequency Response –BJT Applfier	80 - 82
	High Frequency Response -FET Amplifier	82 - 86
#5.	Feedback & Oscillator Circuits	87 – 108
	Classification of Amplifier	87 - 89
	Feedback Amplifiers	89
	Feedback Connection Types	89 - 93
	Various Types of Oscillators	93 – 97
	Tuned Oscillator Circuit	97 - 103

THE GATE

	A Forum of JIT / JISc Graduates	Contents
	Solved Examples	104 - 108
#6.	Operational Amplifiers & Its Applications	109 – 157
	Differential Amplifiers	109 - 110
	Analysis of Differential Amplifier	110 – 111
	Common Mode Rejection Ratio (CMRR)	111 – 119
	Practical Op-Amp Circuits	119 – 135
	Astable Multivibrator (Square Wave Generator)	135 - 138
	Zero-Crossing Detector	138 - 148
	• The 555 Timer	148 - 153
	Solved Examples	153 - 157
#7.	Power Amplifiers	158 - 171
	Introduction	158 - 160
	Series – Fed Class Amplifer	160
	DC Bias Operation	161
	AC Operation	161 - 164
	Transformer Coupled Amplifier	164 - 165
	Push Pull Amplifier	165 - 166
	Transformer Coupled Push Pull Circuit	166 - 167
	Complementary –Symmetry Circuit	167 – 170
	Total Hormonic Distrtion	170 – 171
Refe	rence Books	172
	rence Books	

Reference Books

"Live as if you were to die tomorrow. Learn as if you were to live forever." M. K. Gandhi

CHAPTER

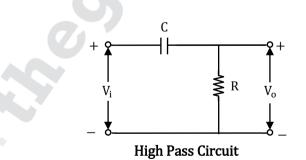
Diode Circuits - Analysis and Application

Learning Objectives

After reading this chapter, you will know

- 1. Wave Shaping Circuit
- 2. Clippers and Champers
- 3. Rectifiers and Power Supplies
- 4. Efficiency, Regulation, Ripple Frequency, Form Factor, Ripple Factor

Wave Shaping Circuits

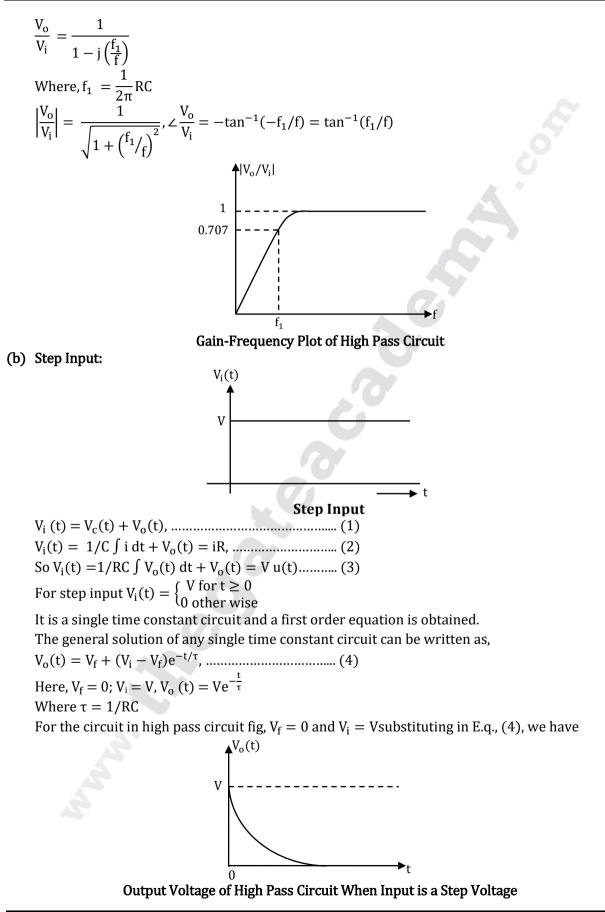

Wave shaping circuits are of two types

- (A) Linear wave shaping circuits
- (B) Non linear wave shaping circuits

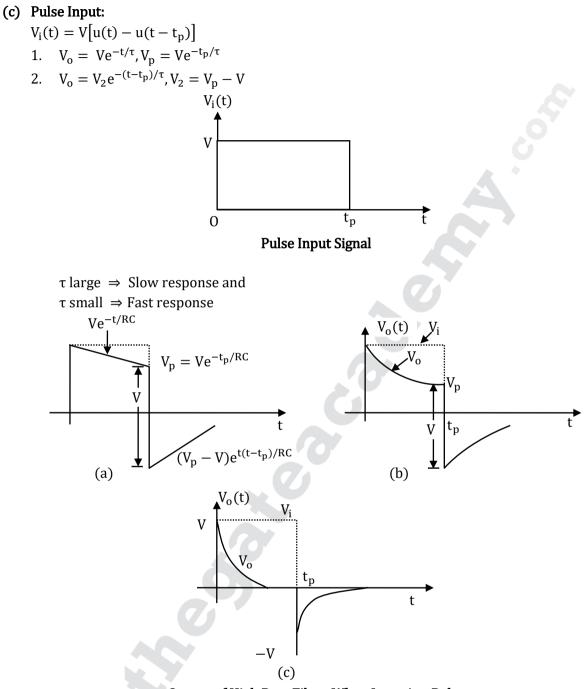
Linear Wave Shaping Circuits

The process by which the wave form of non-sinusoidal signal is altered by passing it through the linear network is called the linear wave shaping.

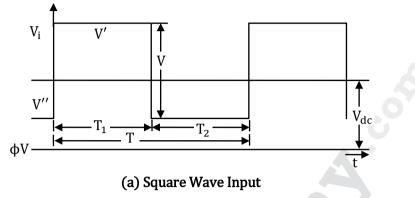
High Pass Circuit


This circuit is called the high pass filter because it passes the high frequency components and attenuates the low frequency components.

For low frequency, the reactance of the capacitance is large.

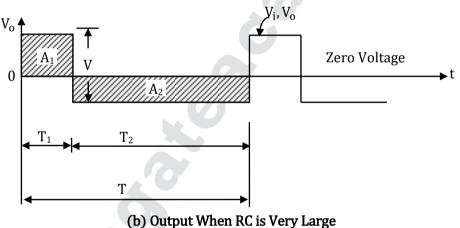

(a) Sinusoidal Input:

$$\frac{V_o}{V_i} = \frac{R}{R + 1/j\omega C} = \frac{1}{1 - j\frac{1}{\omega RC}}$$

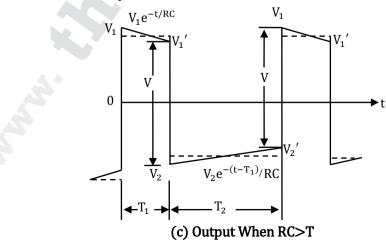


Output of High Pass Filter, When Input is a Pulse

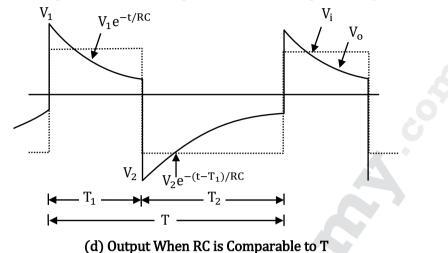
For a low time constant the peak – to – peak amplitudes will be double. The process of converting pulses into spikes by means of a low time constant is called peaking. In high pass RC circuit, the average level of the output is always zero. The area above the zero axis should be equal to the area below the zero axis, $A_1 = A_2$.



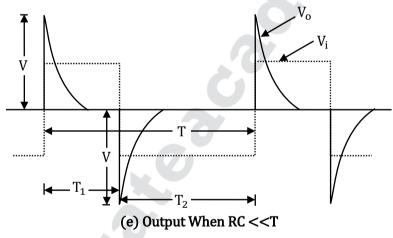
(d) Square Wave Input:



A square wave is a waveform as shown in fig (a) which is periodic with time period T such that it maintains a level V' for time T_1 and V'' for time T_2 where $T = T_1 + T_2$. Figure (b) (c) (d) and (e) show output wave forms of the high pass RC circuit under steady-state conditions for the cases (i) RC>>T (ii) RC>T (iii) RC=T and (iv) RC<<T


Case (i): For arbitrarily large time constant value, the output is same as that of input but with zero dc level.

Case (ii): When RC>T, the output is in the form of a tilt.



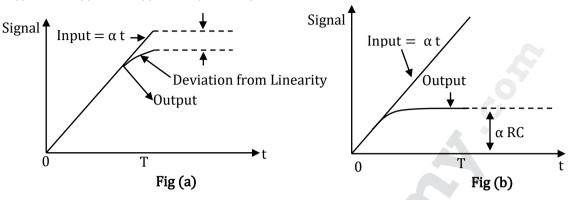
Case (iii): When RC is comparable to T, the output rises and falls exponentially.

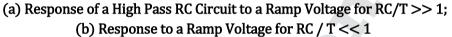
Case (iv): When RC<<T, the output consists of alternative positive and negative spikes.

More generally the response to a square wave must have the appearance shown below: The four levels V_1 , V'_1 , V_2 , V'_2 can be determined from (refer below figure)

 $V'_{1} = V_{1}e^{-T_{1}/\tau}, V'_{1} - V_{2} = V$ $V'_{2} = V_{2}e^{-T_{2}/\tau}, V_{1} - V'_{2} = V$ For symmetrical square wave $T_{1} = T_{2} = T/2$ $V_{1} = -V_{2}, V'_{1} = -V_{2} \text{ and the response is shown below in Fig. (b)}$ Percentage tilt 'P' is defined by $P = \frac{V_{1} - V'_{1}}{V_{1}/2} \times 100 \approx \frac{T}{2} \times 100 \%$

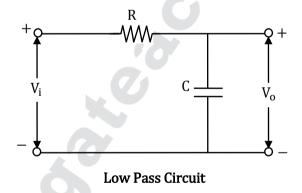
$$P = \frac{v_1 - v_1}{V/2} \times 100 \approx \frac{1}{2\tau} \times 100\%$$
$$= \frac{\pi f_1}{f} \times 100\%$$


Where $f_1 = \frac{1}{2\pi\tau}$ and $f = \frac{1}{T}$


THE GATE

Diode Circuits - Analysis and Application

(e) Ramp Input


 $V_i(t) = \alpha t u(t)$ and $V_o(t) = \alpha \tau (1 - e^{-t/\tau})$, are shown below,

For t $<<\tau$, as a measure of departure from linearity, transmission error, e_t is defined as $e_t = \frac{V_i - V_o}{V_i}$, At t = T, $e_t \approx \frac{T}{2\tau} = \pi f_1 T$

Low Pass Filter

This circuit allows the low frequency components and attenuates the high frequency components. $X_{c} = \frac{1}{j\omega c} = \frac{1}{j2\pi fc}$

At low frequency $(f \rightarrow 0)$; $X_c \rightarrow \infty$ At high frequency $(f \rightarrow \infty)$; $X_c \rightarrow 0$

So at low frequency capacitor behaves like open circuit so low frequency component passes to o/p

(a) Sinusoidal Input

$$\begin{aligned} \left|\frac{V_o}{V_i}\right| &= \frac{1}{\sqrt{1 + (f/f_2)^2}}\\ \angle V_o / V_i &= -\tan^{-1}\left(\frac{f}{f_2}\right), \text{ where } f_2 &= 1/(2\pi\text{RC}) \end{aligned}$$